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Random Oracle Model:
A way to analyze classical cryptographic schemes that use a hash function

hash functions
idealized⇡

(
uniform sampled function,

everyone has access



Quantum Random Oracle Model

hash functions
idealized⇡

(
uniform sampled function,

everyone has quantum access



(Q)ROM with Parallel Queries



A Typical Example Problem

0-preimage problem: finding x s.t. H(x) = 0,

I well-studied and understood classically and quantumly,

I e.g. running Grover’s search in parallel is known to be optimal
for parallel queries.



Another Example Problem

Hash-chain problem: finding x0, x1, . . . , xq s.t. xi+1 = H(xi ):

x0
H7�! x1

H7�! x2
H7�! · · · H7�! xq
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Another Example Problem

Hash-chain problem: finding x0, x1, . . . , xq s.t. xi+1 = H(xi ):

I easy with q sequential queries, but

I expected to be hard with < q sequential queries,

I even if we can query k data points in parallel each round.

Easy to show classically (i.e. without quantum access).

I No quantum proof prior to our work.

x0
H7�! x1

H7�! x2
H7�! · · · H7�! xq



Our Work

A framework for analyzing such problems in parallel QROM:

Using our framework, one can

I prove quantum hardness using classical reasoning,

I by “lifting” the classical proof, if in suitable form,
I Applied to various examples:

I simplify existing proofs, e.g. 0-preimage,
I obtain new bounds, e.g. collision, q-chain,
I main application: first post-quantum security of proof of

sequential work scheme by [Cohen and Pietrzak, 2018].

Independent and concurrent work: [Blocki et al., 2021].
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Lazy Sampling



Lazy Sampling, Formally

Simulate RO H with a database D:

I formalized as a partial function D : X ! Y [ {?},
I initially D0(x) = ? everywhere,

I each query x 2 X , if Di (x) = ?, update Di+1 at x to a
random y 2 Y,

I after q queries, Dq(x) 6= ? for  q values of x .

Important (example) observation:
if there’s no x 2 X s.t. Dq(x) = 0, then

I the adversary A is unlikely to output x s.t. H(x) = 0,

I best guess: some x s.t. Dq(x) = ?,

I sucess probability  1/#Y.

Pr
h
AH ! x s.t. H(x) = 0

i
 Pr [9x 2 X s.t. Dq(x) = 0] + 1/#Y
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Quantum Lazy Sampling
(A way to understand Zhandry’s “compressed oracle”[Zhandry, 2019])



Quantum Lazy Sampling

Similarly, QRO can be simulated quantumly s.t.1

I the state of database is a superposition
P

↵D |Di of partial
functions D : X ! Y [ {?} with  q non-? entries after q
queries.

Similar (example) property:
if there’s no x s.t. Dq(x) = 0, where Dq now is obtained by
measuring the database state, then

I the adversary A is unlikely to output x s.t. H(x) = 0,

I except with a small error bounded as follows.

q
Pr [AH ! x s.t. H(x) = 0]


q
Pr [9x 2 X s.t. Dq(x) = 0] +

p
1/#Y

1This simulation is non-obvious, but is a way to understand the compressed
oracle technique[Zhandry, 2019]



Quantum Lazy Sampling

Similarly, QRO can be simulated quantumly s.t.1

I the state of database is a superposition
P

↵D |Di of partial
functions D : X ! Y [ {?} with  q non-? entries after q
queries.

Similar (example) property:
if there’s no x s.t. Dq(x) = 0, where Dq now is obtained by
measuring the database state, then

I the adversary A is unlikely to output x s.t. H(x) = 0,

I except with a small error bounded as follows.

q
Pr [AH ! x s.t. H(x) = 0]


q
Pr [9x 2 X s.t. Dq(x) = 0] +

p
1/#Y

1This simulation is non-obvious, but is a way to understand the compressed
oracle technique[Zhandry, 2019]



Quantum Lazy Sampling

Similarly, QRO can be simulated quantumly s.t.1

I the state of database is a superposition
P

↵D |Di of partial
functions D : X ! Y [ {?} with  q non-? entries after q
queries.

Similar (example) property:
if there’s no x s.t. Dq(x) = 0, where Dq now is obtained by
measuring the database state, then

I the adversary A is unlikely to output x s.t. H(x) = 0,

I except with a small error bounded as follows.

q
Pr [AH ! x s.t. H(x) = 0]


q

Pr [9x 2 X s.t. Dq(x) = 0] +
p

1/#Y

1This simulation is non-obvious, but is a way to understand the compressed
oracle technique[Zhandry, 2019]



Toy Example, and Its classical Analysis (for now)

How to bound Pr[Dq 2 PRMG], where PRMG := {D|9x s.t. D(x) = 0}?

1. Pr[Dq 2 PRMG] 
P

i
Pr[Di 2 PRMG|Di�1 62 PRMG]

 q
⇥
¬PRMG

k! PRMG
⇤

(“transition capacity”)

2. Observe

Di�1 62 PRMG and Di 2 PRMG

+
9j : Di (xj) = 0 6= Di�1(xj).

Thus,
⇥
¬PRMG

k! PRMG
⇤
 k/#Y,

All together: Pr[Dq 2 PRMG]  q · k/#Y.

詹
hrrgr

DieiRMG
t.y.to

l.it
Diti EPRMG

, t.y.to
上

了 = 0

i
DEPRMG

t.y.to
性0

名 ⼆0

i



Toy Example, and Its classical Analysis (for now)

How to bound Pr[Dq 2 PRMG], where PRMG := {D|9x s.t. D(x) = 0}?

1. Pr[Dq 2 PRMG] 
P

i
Pr[Di 2 PRMG|Di�1 62 PRMG]

 q
⇥
¬PRMG

k! PRMG
⇤

(“transition capacity”)

2. Observe

Di�1 62 PRMG and Di 2 PRMG

+
9j : Di (xj) = 0 6= Di�1(xj).

Thus,
⇥
¬PRMG

k! PRMG
⇤
 k/#Y,

All together: Pr[Dq 2 PRMG]  q · k/#Y.

詹
hrrgr

DieiRMG
t.y.to

l.it
Diti EPRMG

, t.y.to
上

了 = 0

i
DEPRMG

t.y.to
性0

名 ⼆0

i



Toy Example, and Its classical Analysis (for now)

How to bound Pr[Dq 2 PRMG], where PRMG := {D|9x s.t. D(x) = 0}?

1. Pr[Dq 2 PRMG] 
P

i
Pr[Di 2 PRMG|Di�1 62 PRMG]

 q
⇥
¬PRMG

k! PRMG
⇤

(“transition capacity”)

2. Observe

Di�1 62 PRMG and Di 2 PRMG

+
9j : Di (xj) = 0 6= Di�1(xj).

Thus,
⇥
¬PRMG

k! PRMG
⇤
 k/#Y,

All together: Pr[Dq 2 PRMG]  q · k/#Y.

詹
hrrgr

DieiRMG
t.y.to

l.it
Diti EPRMG

, t.y.to
上

了 = 0

i
DEPRMG

t.y.to
性0

名 ⼆0

i



Toy Example, and Its classical Analysis (for now)

How to bound Pr[Dq 2 PRMG], where PRMG := {D|9x s.t. D(x) = 0}?

1. Pr[Dq 2 PRMG] 
P

i
Pr[Di 2 PRMG|Di�1 62 PRMG]

 q
⇥
¬PRMG

k! PRMG
⇤

(“transition capacity”)

2. Observe

Di�1 62 PRMG and Di 2 PRMG

+
9j : Di (xj) = 0 6= Di�1(xj).

Thus,
⇥
¬PRMG

k! PRMG
⇤
 k/#Y,

All together: Pr[Dq 2 PRMG]  q · k/#Y.

詹
hrrgr

DieiRMG
t.y.to

l.it
Diti EPRMG

, t.y.to
上

了 = 0

i
DEPRMG

t.y.to
性0

名 ⼆0

i



Toy Example, and Its classical Analysis (for now)

How to bound Pr[Dq 2 PRMG], where PRMG := {D|9x s.t. D(x) = 0}?

1. Pr[Dq 2 PRMG] 
P

i
Pr[Di 2 PRMG|Di�1 62 PRMG]

 q
⇥
¬PRMG

k! PRMG
⇤

(“transition capacity”)

2. Observe2

Di�1 62 PRMG and Di 2 PRMG

+
9j : Di (xj) = 0 6= Di�1(xj).

Thus,
⇥
¬PRMG

k! PRMG
⇤
 k/#Y,

All together: Pr[Dq 2 PRMG]  q · k/#Y.

2Terminology: “transition is (strongly) recognizable by local properties
Lj = {0}.”

盧
DieiRMGLY.to
h
t

Diti EPRMG

, t.y.to
上

了 ⼆0

i
DEPRMG

t.y.to
性0

V3 ⼆0

i



High-level Recipe of The Proof

1. Decompose into sum of transition capacities:

Pr[Dq 2 P] 
X

i

⇥
¬Pi�1

k! Pi

⇤
(= q ·

⇥
¬P k! P

⇤
for Pi = P).

2. Bound the transition capacities by local properties

⇥
¬Pi�1

k! Pi

⇤


X

j

Pr[UNIF 2 Lj ],

that recognize the transition.

Our framework:
same recipe, di↵erent definition of transition capacity

q
·! ·

y
, adjusted

formulas:

1.
p
Pr[Dq 2 P] 

P q
¬Pi�1

k! Pi

y
,

2.
q
¬Pi�1

k! Pi

y


q
10

P
j
Pr[UNIF 2 Lj ] (same classical probabilities)

(or  e
P

j

p
10Pr[UNIF 2 Lj ] in case of weak recognizabibility)



The 0-Preimage Example - Now Quantum

From classical analysis:

local properties Lj = {0} with Pr[UNIF 2 Lj ] =
1

#Y .

Our framework, Eq. 2:
q
¬PRMG

k! PRMG
y


q
10

P
j
Pr[UNIF 2 Lj ] 

q
10k
#Y .

Our framework, Eq. 1:
p
Pr[Dq 2 PRMG]  q ·

q
¬PRMG

k! PRMG
y
 q

q
10k
#Y .

All together (reconfirming optimality of parallel Grover).

Pr[Dq 2 PRMG]  10q2k
#Y .

No need to understand definition of
q
·! ·

y
. We can simply “lift”

classical proof.
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Additional Results

By the same recipe, we obtain several additional (new) results:

Q=kq coarse-grained fine-grained algorithms

0-preimage O
⇣

Q
2

#Y

⌘
O
⇣

kq
2

#Y

⌘
⌦
⇣

kq
2

#Y

⌘

collision O
⇣

Q
3

#Y

⌘
O
⇣
k
2
q
3

#Y

⌘
⌦
⇣
k
2
q
3

#Y

⌘

q-chain not applicable O
⇣
k
3
q
3

#Y

⌘
?

3

3the red color bounds are our new results



A More Complex Application: PoSW

We proved the post-quantum security of non-interactive PoSW
constructed by [Cohen and Pietrzak, 2018].

Adv  O

✓
k2q2

✓
q + 2

2n+1

◆t

+
k3q3n

#Y +
tn

#Y

◆

I q query rounds with k query points per round,

I n, t security parameters.

Technical challenge:

I PoSW scheme intertwines several problems (collision, q-chain, and more)

I Need tools to decompose complicated transition capacities.



A More Complex Application: PoSW

We proved the post-quantum security of non-interactive PoSW
constructed by [Cohen and Pietrzak, 2018].

Adv  O

✓
k2q2

✓
q + 2

2n+1

◆t

+
k3q3n

#Y +
tn

#Y

◆

I q query rounds with k query points per round,

I n, t security parameters.

Technical challenge:

I PoSW scheme intertwines several problems (collision, q-chain, and more)

I Need tools to decompose complicated transition capacities.



Calculus for Capacities

We give basic rules to manipulate quantum transition capacities:

I
q
P

k! Q
y
=

q
Q

k! P
y
,

I max{
q
Q

k! P
y
,
q
Q

k! P0y} 
q
Q

k! P[P0y 
q
Q

k! P
y
+

q
Q

k! P
y
,

I
q
P \ Q

k! P0y  min{
q
P

k! P0y,
q
Q

k! P0y}.

But also more involved ones, e.g.

q
¬P0

k! Pn

y


X

i

✓q
¬P0

k̄i! ¬Q
y
+

q
Q\Pi�1

ki! Q \ Pi

y
,

◆

where k = k1 + · · ·+ kn and k̄i = k1 + · · ·+ ki .

Allow to work with
q
·! ·

y
on an abstract level, without

understanding the definition.
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Recap

By means of

I abstracting away technical aspects of Zhandry’s compressed
oracle technique, and

I proving new technical results for parallel queries.

We o↵er a framework that, when applicable,

I proves query-complexity bounds in the parallel-query QROM,

I using purely classical means, by “lifting” corresponding
classical proofs.

Applied to di↵erent example problems:

recover known results, find new results.



That’s It

Thanks for your listening!

Arxiv. 2010.11658

Eprint. 2020/1305
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