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Random Oracle Model:

A way to analyze classical cryptographic schemes that use a hash function

hash functions =~

everyone has access

idealized {uniform sampled function,




Quantum Random Oracle Model

hash functions =
everyone has quantum access

idealized {uniform sampled function,




(Q)ROM with Parallel Queries
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A Typical Example Problem

0-preimage problem: finding x s.t. H(x) =0,
» well-studied and understood classically and quantumly,

» e.g. running Grover's search in parallel is known to be optimal
for parallel queries.
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Another Example Problem

Hash-chain problem: finding xo, x1, ..., xq s.t. xit1 = H(x;):
» easy with g sequential queries, but
> expected to be hard with < g sequential queries,
> even if we can query k data points in parallel each round.
Easy to show classically (i.e. without quantum access).

» No quantum proof prior to our work.
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Our Work

A framework for analyzing such problems in parallel QROM:

Using our framework, one can
> prove quantum hardness using classical reasoning,
» by “lifting” the classical proof, if in suitable form,
> Applied to various examples:
» simplify existing proofs, e.g. 0-preimage,
» obtain new bounds, e.g. collision, g-chain,

» main application: first post-quantum security of proof of
sequential work scheme by [Cohen and Pietrzak, 2018].

Independent and concurrent work: [Blocki et al., 2021].
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Lazy Sampling, Formally

Simulate RO H with a database D:
» formalized as a partial function D : X — Y U {L},
» initially Do(x) = L everywhere,

» each query x € X, if Dj(x) = L, update D;;1 at x to a
random y € Y,

» after q queries, Dg(x) # L for < q values of x.
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» the adversary A is unlikely to output x s.t. H(x) =0,
> best guess: some x s.t. Dg(x) = L,
> sucess probability < 1/#).



Lazy Sampling, Formally

Simulate RO H with a database D:
» formalized as a partial function D : X — Y U {L},
» initially Dy(x) = L everywhere,

» each query x € X, if Dj(x) = L, update D;;1 at x to a
random y € Y,

» after q queries, Dg(x) # L for < q values of x.

Important (example) observation:
if there’'s no x € X s.t. Dg(x) =0, then

» the adversary A is unlikely to output x s.t. H(x) =0,
> best guess: some x s.t. Dg(x) = L,
> sucess probability < 1/#).

Pr [AH 5 x st H(x)=0| < Pr[3x € X st. Dy(x) = 0] + 1/#Y



Quantum Lazy Sampling
(A way to understand Zhandry's “compressed oracle” [Zhandry, 2019])
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Quantum Lazy Sampling

Similarly, QRO can be simulated quantumly s.t.

» the state of database is a superposition > ap|D) of partial
functions D : X — Y U {L} with < g non-_L entries after q
queries.

1This simulation is non-obvious, but is a way to understand the compressed
oracle technique[Zhandry, 2019]
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Quantum Lazy Sampling

Similarly, QRO can be simulated quantumly s.t.

» the state of database is a superposition > ap|D) of partial
functions D : X — Y U {L} with < g non-_L entries after q
queries.

Similar (example) property:
if there’s no x s.t. Dg(x) = 0, where D4 now is obtained by
measuring the database state, then

» the adversary A is unlikely to output x s.t. H(x) =0,

> except with a small error bounded as follows.

\/Pr[AH — x s.t. H(x) =0]
<\/Pr[E|x€XstD —0]+\/1/T

1This simulation is non-obvious, but is a way to understand the compressed
oracle technique[Zhandry, 2019]



Toy Example, and lts classical Analysis (for now)

How to bound Pr[D, € PRMG], where PRMG := {D|3x s.t. D(x) = 0}7?
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Toy Example, and Its classical Analysis (for now)

O,
L
1. Pr[D, € PRMG] < 5, Pr[D; € PRMG|D;_; ¢ PRMG] j
P
S q[_‘PRMG i) PRMG} (“transition capacity”)
0; & RMG
2. Observe? —
L
D;_1 ¢ PRMG and D; € PRMG J/

I
3 Di(x;) = 0 # Di—1(x).

Thus, [-PRMG % PRMG] < k/#Y,
All together: Pr[D, € PRMG] < q - k/#).

2Terminology: “transition is (strongly) recognizable by local properties | |
;= {0}



High-level Recipe of The Proof
1. Decompose into sum of transition capacities:

PriDg e PI< > [-Piii S Pi] (=g [-P 5 P] for P; = P).

2. Bound the transition capacities by local properties

[—Pioy 5 Pi] < ST PHUNIF € £)],
J

that recognize the transition.

Our framework:
same recipe, different definition of transition capacity [- — -], adjusted
formulas:

1. /PrD, Pl <3 [-Pis 5P,
k,
2. [[_‘Pi—l — P/] < \/10 Zj Pr[UNlF € ['J] (same classical probabilities)

(or<ed’; \/10Pr[UNIF € £;] in case of weak recognizabibility)




The 0-Preimage Example - Now Quantum

From classical analysis:

local properties £; = {0} with Pr[UNIF € £;] = %
Our framework, Eq 2:

[-PRMG % PRMG] < \/102 PrUNIF € £] < \/E.
Our framework, Eq. 1:

/Pr[D, € PRMG] < q- [~PRMG % PRMG] < q\/%.
All together (reconfirming optimality of parallel Grover).

Pr[D, € PRMG] < 10‘7 ok




The 0-Preimage Example - Now Quantum

From classical analysis:

local properties £; = {0} with Pr[UNIF € £;] = %
Our framework, Eq 2:

[-PRMG % PRMG] < \/102 PrUNIF € £] < \/E.
Our framework, Eq. 1:

/Pr[D, € PRMG] < q- [~PRMG % PRMG] < q\/%.
All together (reconfirming optimality of parallel Grover).

Pr[D, € PRMG] < 10‘7 ok

No need to understand definition of [[ — ]] We can simply “lift"
classical proof.



Additional Results

By the same recipe, we obtain several additional (new) results:

W

Q=kq coarse-grained | fine-grained | algorithms

. 2 2
O-preimage | O (%) 0] (kq ) Q (%)
collision 0 (%) (kz;) Q (%)
g-chain not applicable ( =L ) ?

3the red color bounds are our new results



A More Complex Application: PoSW

We proved the post-quantum security of non-interactive PoSW
constructed by [Cohen and Pietrzak, 2018].

2\' Kk3g3n tn
< 2 2 (9+F q tn.
Adv < O <k q <2n+1 + 7y + 7y

> g query rounds with k query points per round,

> n,t security parameters.



A More Complex Application: PoSW

We proved the post-quantum security of non-interactive PoSW
constructed by [Cohen and Pietrzak, 2018].

2\' Kk3g3n tn
< 22(9+ q
Adv_O<kq <2n+1 + y +7y

> g query rounds with k query points per round,

> n,t security parameters.

Technical challenge:
» PoSW scheme intertwines several problems (coliision, g-chain, and more)

» Need tools to decompose complicated transition capacities.
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Calculus for Capacities

We give basic rules to manipulate quantum transition capacities:
> [P5Q]=[Q5P],
> max{[Q 5 P], [Q 5 P} < [Q % PuP] < [Q % P]+[Q 5 P],
> [PNQE P <min{[P 5P, [Q5 P}

But also more involved ones, e.g.

[-Po 5 P,] < > ([[ﬁpogﬂQ]] + [Q\Pi-1 gQﬁPi]L)
1
where k = ky + ---+ ky and kj = ky + -+ + k;.

Allow to work with [[ — ]] on an abstract level, without
understanding the definition.



Recap

By means of

> abstracting away technical aspects of Zhandry’'s compressed
oracle technique, and

» proving new technical results for parallel queries.
We offer a framework that, when applicable,
> proves query-complexity bounds in the parallel-query QROM,

» using purely classical means, by “lifting” corresponding
classical proofs.

Applied to different example problems:

recover known results, find new results.



That's It

Thanks for your listening!
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