

Security Proofs for QKD Protocols in Infinite Dimensions

Twesh Upadhyaya, Thomas van Himbeeck, Jie Lin, Norbert Lütkenhaus

Institute for Quantum Computing, University of Waterloo

QCrypt 2021 August 25, 2021

https://doi.org/10.1103/PRXQuantum.2.020325

Outline

- Introduction
- Dimension Reduction Method
- Application to Discrete-Modulated Continuous-Variable QKD
- Application to Unbalanced BB84
- Conclusion

Introduction

Discrete-Modulated Continuous-Variable QKD

- Integrates with existing telecom technology
- Minimal requirements on source modulator
- Promising candidate for large-scale quantum-secured networks

Needed a security proof for small (but not too small!) numbers of signal states

Approaches to proving the security of DMCVQKD with four states

- Existing DMCVQKD security proofs?
- Optimality of Gaussian attacks?
- Squashing techniques?
- Numerical key rates?

... at least not directly

Not for 4 states
Only for Gaussian modulation
Only for discrete-variable QKD
Only for finite dimensions

Steps of a generic QKD protocol

- Establish a state ρ_{AB} N times Measure subsystems

- Parameter estimation
- Announcements and sifting
- 5. Key map
- Error correction
- Privacy amplification

The key rate can be formulated as a convex minimization over states, and solved numerically

- Asymptotic, collective attacks (IID)
- Devetak-Winter formula:

How can we lower bound infinite-dimensional minimizations, given a numerical framework for lower bounding finite-dimensional ones?

 Finite-dimensional numerics framework
 (See Submission #227) Infinite-dimensional protocol

Dimension Reduction Method

Inf.-dim minimization is lower-bounded by a fin.-dim one, minus a small correction term

Four quantities are needed to apply the dimension reduction theorem

- 1. Finite subspace to work in: \mathcal{H}_N , Π
- 2. Bound on weight outside this subspace: ${\cal W}$
- 3. Correction term: Δ
- 4. Finite-dimensional feasible set: \mathbf{S}_N

Protocol-specific

Protocol-agnostic

Choosing the finite subspace and bounding the weight are protocol-specific steps

- Commutation relations important
- Bound on weight:

$$W \ge \sup_{\rho \in \mathbf{S}_{\infty}} \operatorname{Tr}(\rho \bar{\Pi})$$

Useful relation:

$$F(\rho, \Pi \rho \Pi) = \text{Tr}(\rho \Pi)$$

> 1 - W

$$\Pi + \overline{\Pi} = 1$$

Deriving a general form of the correction term

 \bullet Limits how much the objective function f can increase under the projection Π

 $oldsymbol{\cdot}$ For every state $ho \in \mathbf{S}_{\infty}$

$$F(\rho, \Pi \rho \Pi) \ge 1 - W \implies f(\Pi \rho \Pi) \le f(\rho) + \Delta(W)$$

• Uniformly Close to Decreasing Under Projection

$$\Delta(W) = \sqrt{2W - W^2} \log_2 |Z| + \left(1 + \sqrt{2W - W^2}\right) h\left(\frac{\sqrt{2W - W^2}}{1 + \sqrt{2W - W^2}}\right)$$

Specifying the feasible set for the finitedimensional optimization

Must satisfy

$$\mathbf{S}_N \supseteq \Pi \mathbf{S}_{\infty} \Pi$$

• Different approaches, depending on properties of observables

$$\mathbf{S}_{\infty} = \{ \rho \in \operatorname{Pos}(\mathcal{H}_{\infty}) : | \mathbf{S}_{N} = \{ \tilde{\rho} \in \operatorname{Pos}(\mathcal{H}_{N}) : \\ \operatorname{Tr}(\rho) = 1 \longrightarrow 1 - W \leq \operatorname{Tr}(\tilde{\rho}) \leq 1 \\ \operatorname{Tr}_{B}(\rho) = \tau_{A} \longrightarrow \|\operatorname{Tr}_{B}(\tilde{\rho}) - \tau_{A}\|_{1} \leq 2\sqrt{W} \\ \operatorname{Tr}(\rho\Gamma_{i}) = \gamma_{i} \} \longrightarrow \gamma_{i} - W\|\Gamma_{i}\|_{\infty} \leq \operatorname{Tr}(\tilde{\rho}\Gamma_{i}) \leq \gamma_{i} \}$$

Revisiting and proving theorem statement

Discrete-Modulated Continuous-Variable QKD

Loss-only scenario provides useful intuition for application of dimension reduction method

• In loss-only scenario, key rate is analytically determined

Recall: four quantities are needed to apply the dimension reduction theorem

- 1. Finite subspace to work in: \mathcal{H}_N , Π 2. Bound on weight outside this subspace: W3. Correction term: Δ Protocol-agnostic
- 4. Finite-dimensional feasible set: \mathbf{S}_N

The finite subspace is built from displaced Fock bases

Expect displaced thermal states

Choose conditional projection accordingly

$$\Pi^{N} \equiv \sum_{i} |i\rangle\langle i|_{A} \otimes \Pi^{N}_{B_{\beta_{i}}}$$

$$\Pi_{B_{\beta_i}}^N = \sum_{n=0}^N |n_{\beta_i}\rangle\langle n_{\beta_i}|$$

The weight is calculated using SDP duality

• Split into conditional weights: $W = \sum_i p(i)W_i$ $\frac{\left\langle \hat{n}_{\beta_i}^2 \right\rangle - \left\langle \hat{n}_{\beta_i} \right\rangle}{N(N+1)} = W_i \geq \max_{\rho} \text{maximize: } \operatorname{Tr}\left(\overline{\Pi}_{B_{\beta_i}}^N \rho\right) \text{ subject to: } \operatorname{Tr}(\rho) = 1$ $\operatorname{Tr}(\hat{n}_{\beta_i}\rho) = \langle \hat{n}_{\beta_i} \rangle$ $\operatorname{Tr}(\hat{n}_{\beta_i}^2 \rho) = \langle \hat{n}_{\beta_i}^2 \rangle$ $\rho \in \text{Pos}(\mathcal{H}_B)$

All operators are diagonal in respective displaced Fock basis

Remaining steps of dimension reduction method are protocol-agnostic

- ullet Simply use the general correction term $\Delta(W)$
- Plug in specific observables to the generic form of finite set

Dimension reduction removes unrealistic cutoff assumption with hardly any impact on key rate

Representative key rates for DMCVQKD

Application to Unbalanced BB84

Dimension reduction gives near-identical results to flag-state squasher but with an improved runtime

Conclusion

Summary

- Dimension reduction method
- DMCVQKD security proof
- Alternative for DV protocols

Future Work

- Apply to other protocols
- Finite-key analysis
- DMCVQKD protocol optimization

Thank you! Any questions?

https://doi.org/10.1103/PRXQuantum.2.020325