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Introduction



Discrete-Modulated Continuous-Variable QKD
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* Integrates with existing telecom technology
* Minimal requirements on source modulator
* Promising candidate for large-scale quantum-secured networks



Needed a security proof for small (but not
too smalll) numbers of signal states

Number of
signal states

100
1000

e Zhao et al. (2009)

* Matsuura et al. (2021) (See Submission #156)
* Bradler and Weedbrook (2018)

* Ghoraietal, Lin et al. (2019)

Assume state is finite-dimensional

* Denys et al. (2021) (See Submission #18)

* Kaur et al. (2021)



Approaches to proving the security of
DMCVQKD with four states

@ Existing DMCVQKD security proofs?  Not for 4 states

@ Optimality of Gaussian attacks? Only for Gaussian modulation
& Squashing techniques? Only for discrete-variable QKD
@ Numerical key rates? Only for finite dimensions

... at least not directly



Steps of a generic QKD protocol
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1. Establish a state .
PAB N times
2. Measure subsystems

Parameter estimation
Announcements and sifting
Key map

Error correction

Privacy amplification
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The key rate can be formulated as a convex
minimization over states, and solved numerically

» Asymptotic, collective attacks (IID)
* Devetak-Winter formula:

R* = inf [f(pap)] —05&
pABESoo |||

Parameter

Estimation
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How can we lower bound infinite-dimensional
minimizations, given a numerical framework for
lower bounding finite-dimensional ones?

* Finite-dimensional numerics * Infinite-dimensional protocol
framework

(See Submission #227)

Connection?




Dimension Reduction Method



Inf.-dim minimization is lower-bounded by a
fin-dim one, minus a small correction term

A

Soo
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Main|Dimension Reduction Theorem

nf f(p) > SN!f(ﬁ)
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Four quantities are needed to apply the
dimension reduction theorem

1. Finite subspace to work in: H, 11
— Protocol-specific

2. Bound on weight outside this subspace: 1/ _|

3. Correction term: A\
— Protocol-agnostic

4. Finite-dimensional feasible set: SN ]
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Choosing the finite subspace and bounding
the weight are protocol-specific steps

 Commutation relations important

* Bound on weight:

W > sup Tr(pﬁ)
PES

* Useful relation: IH+1I=1
F(p,1IpIl) = Tr(pII)

>1-W




Deriving a general form of the correction term

e Limits how much the objective function f
can increase under the projection 11

* For every state p € S

F(p,Hpll) > 1 =W = f(Ilpll) < f(p) + A(W)

* Uniformly Close to Decreasing Under Projection

V2W — W2
1+ V2W — W2

A(W) = V2W — W2log, | Z] + (1 V2 — W2) h (
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Specifying the feasible set for the finite-
dimensional optimization

e Must satisfy

Sy 2 IS I

* Different approaches, depending on properties of observables

v

Seo = {p€Pos(H): | Sy = {pe€Pos(Hn):
Tr(p) =1 < > 1W< Tr(p) <1
I
Trp(p) =74 <« » [ Tr(p) — 7all; < 2VIW
I
I

Tr(pl's) =i } - i = Wil < Tr(pl's) < i }
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Revisiting and proving theorem statement

inf f(p) > inf f(p) —AW)

\ J \

£(p™) F(p™) 4D (3.)




Discrete-Modulated
Continuous-Variable QKD



Loss-only scenario provides useful intuition for
application of dimension reduction method

* In loss-only scenario, key rate is analytically determined

i) i | i), Bi = /na;

() =0 7 e =0
e

18i)




Recall: four quantities are needed to apply
the dimension reduction theorem

1. Finite subspace to work in: H, 11
— Protocol-specific

2. Bound on weight outside this subspace: W |

—_—

3. Correction term: A\
— Protocol-agnostic

4. Finite-dimensional feasible set: SN ]



The finite subspace is built from displaced
Fock bases

0.5
* Expect displaced thermal states

7

* Choose conditional projection III._//

accordingly 0123458678910

MV =3 fifil, o105, Iy, = Z g, g,
; n=0
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The weight is calculated using SDP duality

* Split into conditional weights: W = ZP(Z)Wz

> — (ng;)

~2
<”m

N(N + 1)

p— M/?, > maximize:
— p

subject to:

* All operators are diagonal in respective displaced Fock basis



Remaining steps of dimension reduction
method are protocol-agnostic

* Simply use the general correction term A(W)
* Plug in specific observables to the generic form of finite set

[TV &= T,

22



Dimension reduction removes unrealistic cutoff
assumption with hardly any impact on key rate

10 —— Key rate
----- Uncorrected value
—<— Cutoff assumption
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Representative key rates for DMCVQKD
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Application to Unbalanced BB84



Dimension reduction gives near-identical results to
flag-state squasher but with an improved runtime

0.081
Dimension Reduction: k =0.5
0.071{ —— Flag-State Squasher k=0.5
----- Dimension Reduction: k =0.3
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© »
30.04' . P e
4
0.031
0.02/
0.011
0.00 0.2 0.4 0.6 0.8 1.0

Transmission Efficiency n



Conclusion

D (Hoo) S oo

Summary
* Dimension reduction method
 DMCVQKD security proof
* Alternative for DV protocols

Future Work
* Apply to other protocols
* Finite-key analysis
* DMCVQKD protocol optimization

SN

Thank you! Any questions?
https://doi.org/10.1103/PRXQuantum.2.020325
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