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Detector in quantum key distribution 

Single-photon detector
 Widely used in discrete-variable (DV) QKD

 Extremely low noise achievable

 Low temperature operation

 Limited detection rate due to dead-time

Quantum 
signal

Direct detection

Detector
output

1

Optical homodyne detection
 Widely used in continuous-variable (CV) QKD

 High efficiency, high speed, room temperature 

operation

 Immune to broadband background light

 Require a reliable phase reference.

Strong LO

Quantum 
signal

Diff. photo 
current1

108

104/108

Coherent detection
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Motivation

Can we operate optical homodyne detectors in 
phase-insensitive, photon counting mode to 

implement DV QKD?

Such a scheme may inherit certain advantages of 
coherent detection without requiring a phase 

reference
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Basic idea: conjugate homodyne as 
photon counter

Electric field

𝐸𝐸 𝑡𝑡 = 𝐸𝐸𝑥𝑥 cos𝜔𝜔𝜔𝜔 + 𝐸𝐸𝑝𝑝 sin𝜔𝜔𝜔𝜔 Energy ∝ 𝐸𝐸𝑥𝑥 2 + 𝐸𝐸𝑝𝑝
2

�𝑋𝑋 �𝑃𝑃 Photon number  ∝ 𝑋𝑋 2 + 𝑃𝑃 2

However

�𝑋𝑋, �𝑃𝑃 ≠ 0
Intrinsically noisy 

measurement

Uncertainty 
principle
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6

Conjugate homodyne as 
single-photon detector

BD2

x3

p4
 π/2

BS1

BS2

BS3

BS4

LO

Signal 1

2

3

4

BD1

Commercial product from Optoplex
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7

Single-shot measurement

For an arbitrary input state ρ, the probability 
density of Z is 

For number state | ⟩𝑛𝑛 input 

Phase insensitive 
detector

Define 𝑍̂𝑍 = �𝑋𝑋2 + �𝑃𝑃2

𝑃𝑃 𝑧𝑧 = 𝑒𝑒−𝑧𝑧 �
𝑛𝑛=0

∞
𝜌𝜌𝑛𝑛𝑛𝑛
𝑛𝑛!

𝑧𝑧𝑛𝑛

𝑃𝑃 𝑧𝑧|𝑛𝑛 = 𝑒𝑒−𝑧𝑧
𝑧𝑧𝑛𝑛

𝑛𝑛!

B. Qi, P. Lougovski, and B. P. Williams, Optics Express 28, 2276-2290 (2020)
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8

Threshold single-photon detector

B. Qi, P. Lougovski, and B. P. Williams, Optics Express 28, 2276-2290 (2020)

Threshold τ

Detection efficiency Dark count probability Ratio

𝜂𝜂 = �
𝜏𝜏

∞
𝑃𝑃 𝑧𝑧 1 𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝜏𝜏(𝜏𝜏 + 1) D = �

𝜏𝜏

∞
𝑃𝑃 𝑧𝑧 0 𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝜏𝜏 𝑅𝑅 = �𝜂𝜂 𝐷𝐷 = 𝜏𝜏 + 1

ClickNo 
click



99

9

Repeated measurement

B. Qi, P. Lougovski, and B. P. Williams, Optics Express 28, 2276-2290 (2020)

Coherent state Thermal state

𝑃𝑃 𝑧𝑧 = 𝑒𝑒−𝑧𝑧 �
𝑛𝑛=0

∞
𝜌𝜌𝑛𝑛𝑛𝑛
𝑛𝑛!

𝑧𝑧𝑛𝑛From reconstruct photon number distribution
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BB84 QKD using conjugate homodyne detection

Protocol & assumptions

o Efficient BB84 QKD protocol—one basis is 
chosen more often than the other;

o Polarization encoding with a perfect 
single-photon source;

o No technical imperfection except channel 
loss;

o Perfect error correction approaching the 
Shannon limit

o Asymptotic case (neglect any finite data 
size effects)

Bob assigns the bit value as
0 (if 𝑍𝑍0 > 𝜏𝜏 and 𝑍𝑍1 < 𝜏𝜏); 1 (if 𝑍𝑍0 < τ and 𝑍𝑍1 > 𝜏𝜏);
Null (if 𝑍𝑍0 < τ and 𝑍𝑍1 < 𝜏𝜏); Random (if 𝑍𝑍0 > τ and 𝑍𝑍1 > 𝜏𝜏).

D0Mod PBS

D1

𝑍𝑍0

Bob

𝑍𝑍1

Basis 
selection

D0/D1: conjugate 
homodyne
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Standard security analysis 

Secret key rate
𝑅𝑅 = 𝑄𝑄(𝑍𝑍) 1 − 𝐻𝐻2 𝐸𝐸 𝑋𝑋 − 𝐻𝐻2(𝐸𝐸(𝑍𝑍))

𝑄𝑄 𝑍𝑍 : Gain
𝐸𝐸 𝑍𝑍 (𝐸𝐸 𝑋𝑋 ): Quantum bit error rate (QBER)

𝑄𝑄 = 1 − 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 𝜂𝜂𝑐𝑐𝑐𝜏𝜏 + 2 𝑒𝑒−𝜏𝜏 − 𝜂𝜂𝑐𝑐𝑐𝜏𝜏 + 1 𝑒𝑒−2𝜏𝜏

𝐸𝐸 =
𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 0.5𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑄𝑄
=
𝑒𝑒−𝜏𝜏 − 0.5 𝜂𝜂𝑐𝑐𝑐𝜏𝜏 + 1 𝑒𝑒−2𝜏𝜏

𝑄𝑄
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2

Two features of the detection scheme

 Trusted detector noise: fundamental detector noise 
cannot be controlled/accessed by Eve

 Photon number distribution at Bob can be 
reconstructed

D0
Mod PBS

D1

S0

S1 𝐵𝐵𝑖𝑖
(𝑣𝑣)

𝐵𝐵𝑖𝑖

BobApproach
o Introducing virtual ideal SPDs (S0 and S1)
o Secret key is generated from real 

detectors (D0 and D1)
o Detection statistics (QBER) of virtual 

detectors can be determined from the 
outputs of real detectors and will be 
used to upper bound Eve’s information
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3

Improved security analysis

D0
Mod PBS

D1

S0

S1 𝐵𝐵𝑖𝑖
(𝑣𝑣)

𝐵𝐵𝑖𝑖

Bob
Secret key rate using reverse reconciliation

𝑄𝑄 𝑍𝑍 Overall gain in Z-basis (real detectors)
𝐸𝐸 𝑍𝑍 Overall QBER in Z-basis (real detectors)
𝑄𝑄i,𝑗𝑗

𝑍𝑍 Gain in Z-basis from the cases when i photons are sent 
by Alice and j photons arrive at Bob

𝐸𝐸1,1
𝑋𝑋,𝑉𝑉 QBER in X-basis for the cases of when 1 photon is sent 

by Alice and 1 photon arrives at Bob (virtual detectors)
𝑓𝑓 Reconciliation efficiency

𝑅𝑅 = 𝑄𝑄1,0
𝑍𝑍 + 𝑄𝑄1,1

𝑍𝑍 1 −𝐻𝐻2 𝐸𝐸1,1
𝑋𝑋,𝑉𝑉 − 𝑓𝑓𝑄𝑄 𝑍𝑍 𝐻𝐻2 𝐸𝐸 𝑍𝑍

B. Qi, Phys. Rev. A, 103, 012606 (2021)
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4

Channel transformation
Alice sends m photon in H-polarization
Bob performs measurement in H/V basis

𝐶𝐶𝑛𝑛0,𝑛𝑛1|𝑚𝑚

Alice 
Channelm 

H-photon H

V

Bob 
n0

n1

𝑍𝑍(𝐻𝐻)

𝑍𝑍(𝑉𝑉)

From the measurement results of real detectors {𝑍𝑍𝑖𝑖
(𝐻𝐻),𝑍𝑍𝑖𝑖

(𝑉𝑉), 𝑖𝑖 = 1,2 … }, Bob 
can determine 𝐶𝐶𝑛𝑛0,𝑛𝑛1|1 , including 𝐶𝐶0,0 |1, 𝐶𝐶1,0 |1, and 𝐶𝐶0,1 |1

*Channel transformation 𝐶𝐶𝑛𝑛0,𝑛𝑛1|𝑚𝑚: the probability n0 H-photons and n1 V-
photons outputted from the channel given m H-photons input  

See also, E. Lavie, I. W. Primaatmaja, W. Y. Kon, C. Wang, C. Lim, arXiv preprint arXiv:2102.08419
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5

Secret key rate 

Secret key rate

𝑄𝑄 𝑍𝑍 and 𝐸𝐸 𝑍𝑍 can be determined from raw keys

𝑅𝑅 = 𝑄𝑄1,0
𝑍𝑍 + 𝑄𝑄1,1

𝑍𝑍 1 − 𝐻𝐻2 𝐸𝐸1,1
𝑋𝑋,𝑉𝑉 − 𝑓𝑓𝑄𝑄 𝑍𝑍 𝐻𝐻2 𝐸𝐸 𝑍𝑍

𝑄𝑄1,0 = 𝑄𝑄1,0,0 = 𝐶𝐶0,0|1𝐷𝐷0,0

Detector response 𝐷𝐷0,0 is given by

𝐷𝐷0,0 = 2𝑒𝑒−𝜏𝜏 1 − 𝑒𝑒−𝜏𝜏

𝑄𝑄1,1 = 𝑄𝑄1,1,0 + 𝑄𝑄1,0,1 = 𝐶𝐶1,0|1𝐷𝐷1,0 + 𝐶𝐶0,1|1𝐷𝐷0,1

𝐷𝐷0,1 = 𝐷𝐷1,0 = 𝜏𝜏 + 2 𝑒𝑒−𝜏𝜏 − 2 𝜏𝜏 + 1 𝑒𝑒−2𝜏𝜏

𝐸𝐸1,1
𝑉𝑉 =

𝐶𝐶0,1|1

𝐶𝐶0,1|1 + 𝐶𝐶1,0|1

Detector outputs
o Raw keys
o Channel transformation 𝐶𝐶𝑛𝑛0,𝑛𝑛1|1

D0
Mod PBS

D1

S0

S1 𝐵𝐵𝑖𝑖
(𝑣𝑣)

𝐵𝐵𝑖𝑖

Bob
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6

Simulation results

The proposed scheme could be useful for short-distance applications

B. Qi, Phys. Rev. A, 103, 012606 (2021)
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How about practical photon sources?
(Some very preliminary results)
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Non-ideal single-photon source (SPS)
Assumption*

(a) Vacuum state probability S0
(b) Single-photon probability S1=1-S0
(c) Multi-photon probability is negligible

The secret key rate of ideal SPS with channel 
transmittance 𝜂𝜂𝑐𝑐𝑐 replaced by 𝜂𝜂 = 𝑆𝑆1𝜂𝜂𝑐𝑐𝑐

Ideal 
SPS

T=S1

Non-ideal 
SPS

Ideal 
SPS

T=S1

Private boundary

*P. Chaiwongkhot, S. Hosseini, A. Ahmadi,  et al, arXiv preprint arXiv:2009.11818 (2020)

Simulation results (S1=1—black; 0.5—red; and 0.2—bule) 
Intrinsic QBER= 0.01



1919

Phase-randomized weak coherent source
+ decoy states
Infinite decoy-state protocol
o Each transmission, Alice randomly prepares either signal state (µ) or 

one of the decoy-states (𝜈𝜈𝑖𝑖 , 𝑖𝑖 = 1,2, …. )
o Decoy states are used to determine channel transformation 𝐶𝐶𝑛𝑛0,𝑛𝑛1|𝑚𝑚
o Signal state is used to generate secret key

Channel transformation of coherent state 𝜈𝜈𝑖𝑖 (𝐶𝐶𝑛𝑛0,𝑛𝑛1|𝜈𝜈𝑖𝑖) can be determined experimentally

Channel transformation of number state (𝐶𝐶𝑛𝑛0,𝑛𝑛1|𝑚𝑚) can be determined from
𝐶𝐶𝑛𝑛0,𝑛𝑛1|𝜈𝜈𝑖𝑖 (𝑖𝑖 = 1,2, …. ) using following linear equations

∑𝑚𝑚=0
∞ 𝑆𝑆𝑚𝑚

(𝜈𝜈𝑖𝑖)𝐶𝐶𝑛𝑛0,𝑛𝑛1|𝑚𝑚 = 𝐶𝐶𝑛𝑛0,𝑛𝑛1|𝜈𝜈𝑖𝑖

where 𝑆𝑆𝑚𝑚
𝜈𝜈𝑖𝑖 = 𝜈𝜈𝑖𝑖

𝑚𝑚

𝑚𝑚!
𝑒𝑒−𝜈𝜈𝑖𝑖 is the photon number distribution of coherent state
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Phase-randomized weak coherent source 
+ decoy states

Secret key rate

𝑅𝑅 = �
𝑚𝑚,𝑛𝑛=0

∞

𝑄𝑄m,n,n
𝜇𝜇,𝑍𝑍 + 𝑄𝑄1,1

𝜇𝜇,𝑍𝑍 1 − 𝐻𝐻2 𝐸𝐸1,1
𝑋𝑋,𝑉𝑉

−𝑓𝑓𝑄𝑄 𝜇𝜇,𝑍𝑍 𝐻𝐻2 𝐸𝐸 𝜇𝜇,𝑍𝑍

𝑄𝑄 𝜇𝜇,𝑍𝑍 and 𝐸𝐸 𝜇𝜇,𝑍𝑍 determined from raw keys

𝑄𝑄1,1
𝜇𝜇 = 𝑆𝑆1

(𝜇𝜇) 𝐶𝐶1,0|1𝐷𝐷1,0 + 𝐶𝐶0,1|1𝐷𝐷0,1

𝐸𝐸1,1
𝑉𝑉 =

𝐶𝐶0,1|1

𝐶𝐶0,1|1 + 𝐶𝐶1,0|1

𝑄𝑄𝑚𝑚,𝑛𝑛,𝑛𝑛
(𝜇𝜇) = 𝑆𝑆𝑚𝑚

(𝜇𝜇)𝐶𝐶𝑛𝑛,𝑛𝑛|𝑚𝑚𝐷𝐷𝑛𝑛,𝑛𝑛
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Multiphoton contributions (m=2 case)

Given Alice’s signal pulse contains m=2 photons, under normal
condition, the output of channel could be:

{n0,n1} = {0,0},  {1,0},  {0,1},  {2,0},  {1,1},  {0,2}

Two observations
1. Given Eve knows {n0,n1} photons arrive at Bob, she cannot predict Bob’s measurement results 

with certainty (trusted noise assumption). Eve’s uncertainty about Bob’s key could be 

quantified by 𝐻𝐻2 𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛0,𝑛𝑛1 , where 𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛0,𝑛𝑛1 = 𝑃𝑃𝑤𝑤
𝑛𝑛0,𝑛𝑛1

𝑃𝑃𝑐𝑐
(𝑛𝑛0,𝑛𝑛1)+𝑃𝑃𝑤𝑤

(𝑛𝑛0,𝑛𝑛1)

2. *Secret key could be generated from the case when Alice sends 2 photons and Bob receives 2 
photons

*This idea is from Ignatius William Primaatmaja and Charles Lim (private communication)
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Potential improvement 

Simulation results with intrinsic QBER= 0

Secret key rate
(with Ed=0)

{n0,n1} = {0,0},  {1,0},  {0,1},  {2,0},  {1,1},  {0,2}

𝑅𝑅 = �
𝑚𝑚,𝑛𝑛=0

∞

𝑄𝑄m,n,𝑛𝑛
𝜇𝜇,𝑍𝑍 + 𝑄𝑄1,1

𝜇𝜇,𝑍𝑍 1 − 𝐻𝐻2 𝐸𝐸1,1
𝑋𝑋,𝑉𝑉

−𝑓𝑓𝑄𝑄 𝜇𝜇,𝑍𝑍 𝐻𝐻2 𝐸𝐸 𝜇𝜇,𝑍𝑍 +𝑄𝑄2,1.0
𝜇𝜇,𝑍𝑍 𝐻𝐻2 𝐵𝐵𝐵𝐵𝐵𝐵1,0 +𝑄𝑄2,2.0

𝜇𝜇,𝑍𝑍
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Summary

o We propose a scheme to implement BB84 QKD using
conjugate homodyne detector operated in phase-
insensitive, photon counting mode

o We refine the security analysis by exploring two features
of the detector: trusted detector noise and the ability to
construct photon number distribution

o This scheme can inherit certain advantages of coherent
detection without requiring a phase reference, and might
be useful for short distance application
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