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In this work, we incorporate decoy-state analysis into a well-established numerical framework for key rate calculation, and apply the numerical framework to decoy-state BB84 and measurement-device-
independent (MDI) QKD protocols as examples. Additionally, we combine with these decoy-state protocols what is called ``fine-grained statistics", a variation of existing QKD protocols that makes use of originally 
discarded data to get better key rate. We show that such variations can grant protocols resilience against any unknown and slowly changing rotation along one axis, similar to reference-frame-independent QKD, 
but without the need for encoding physically in an additional rotation-invariant basis. Such an analysis can easily be applied to existing systems, or even data already recorded in previous experiments, to gain 
significantly higher key rate when considerable misalignment is present, extending the maximum distance for BB84 and MDI-QKD and reducing the need for manual alignment in an experiment.

In our group’s previous works [1,2], a numerical framework
capable of calculating the key rate of general QKD protocols 
with a unified algorithm was proposed. (Also see poster #227 
on the framework.)
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Numerical Framework:

A QKD protocol is described in a “prototypical” form containing: 

1. Incorporating Decoy-State Analysis

2. Using Fine-Grained Statistics

Decoy-State Analysis

In practice, phase-randomized weak coherent pulse (WCP) sources 
are often used for QKD, which emit mixtures of photon number 
states following a Poissonian distribution 𝑃!

" for intensity 𝜇:

𝑅 = min
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𝑓 𝜌 − 𝑝$%&& × 𝑙𝑒𝑎𝑘'(&)*

The key rate can be simply calculated from:

where 𝑓 𝜌 = 𝐷 𝒢(𝜌)||𝒵(𝒢(𝜌)) is the quantum relative entropy, and maps 
𝒢 and 𝒵 are defined by the Kraus operator and key map, respectively. The term 
𝑝!"## × 𝑙𝑒𝑎𝑘$%#&' is the leaked information during error-correction. 

Simulation Results

Decoy-state analysis [3-5] is proposed to estimate the single-
photon contribution among the statistics obtained from a WCP 
source, by observing that:

One can use several intensity settings 𝜇 to obtain a set of equations 
with 𝛾! as a set of variables, which form a linear programming (LP) 
problem, and the single photon contribution 𝜸𝟏 can be 
upper/lower-bounded either numerically [6] or analytically [7].

This is an optimization problem of choosing quantum state 𝜌
that minimizes the key rate, given the constraints 𝜌 ∈ 𝑆
constructed from the observed expectation values {𝜸𝒌} of the 
POVMs {Γ%} in an actual experiment. Here 

𝑃+
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𝛾, = ∑+./0 𝑃+
,𝛾+

𝛾12 ≤ 𝛾1 ≤ 𝛾13

In this work, we apply the numerical framework to two important protocols, 
BB84 [8] and measurement-device-independent (MDI) QKD [9], in the case of 
using WCP sources and a finite number of decoy states.

Following the results of Ref. [10], importantly, the state shared by Alice and Bob 
is block-diagonal with respect to the number of photons 𝑛 sent by Alice. The key 
rate can be lower-bounded by summing up the key rates from optimizing the 
conditional density matrices 𝜌! of each subspace (for the photon number sent):

𝑅 = ∑+./0 𝑃+
, min
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Here, we only care about the single-photon-sent subspace, min
&(∈((
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𝑆14 = {𝜌1 ∈ 𝐻5|𝛾1,72 ≤ 𝑇𝑟 Γ7𝜌1 ≤ 𝛾1,73 , ∀𝑘}

Each set of {𝛾),%} corresponds to a bound 𝑆) for 𝜌). We can reformulate the 
problem as optimizing 𝜌) ∈ 𝑆)+ , where 𝑺𝟏+ is the union of all possible 𝑺𝟏 for 
acceptable {𝛾),%}. Mathematically, this is simply:

The final key rate (suppose signal intensity is 𝜇) is written as:

𝛾1,7 ∈ [𝛾1,72 , 𝛾1,73 ]

The key problem is that we cannot directly obtain 𝑆) based on single photon 
statistics {𝛾),%} , but rather have to estimate {𝜸𝟏,𝒌} from decoy-state analysis, 
from which we know each observable satisfies:

𝑆 = {𝜌 ∈ 𝐻5|𝑇𝑟 Γ7𝜌 = 𝛾7 , ∀𝑘}

From here we can see that the decoy-state analysis functions like a “wrapper”:

2. Using Fine-Grained Statistics (Continued)

(To be continued on upper-right)

BB84 MDI-QKD
(partial)

Data used in security analysis

- It is natural for the numerical framework to use the full set of data (including cross-
basis events), i.e. “fine-grained statistics*”, in the analysis: more data simply means 
adding more constraints to the same optimization and a tighter bound. This gives us 
more information to characterize the channel, such as one that contains misalignment.

- When converting raw detector data (e.g. 2, pattern for four detectors) to 𝛾%
corresponding to POVMs, some coarse-graining (binning) is still needed, either due to 
the use of a squashing model, or to simply reduce computational requirements. Such 
coarse-graining can be performed arbitrarily before or after decoy-state analysis.

* fine-grained statistics were applied to the numerical framework in [11], while the idea of using discarded data 
has been studied in multiple previous works [12,13], notably reference-frame-independent (RFI) QKD [13].

- measurements (POVMs), 
- public announcement and sifting (Kraus operators), 
- retrieval of classical key bit (Alice’s key map)
- error-correction and privacy amplification.

BB84

MDI-QKD

Parameters: dark count rate is 10)*, error-
correction efficiency is assumed to be 1, and 
standard optical fibre of 0.2dB/km loss is used. 
Both protocols only consider infinite data.

- Fine-grained statistics can remove the effect of misalignment on privacy amplification, but the increased error-
correction will still cause key rate to decrease with misalignment.

- In both cases we observe considerably 
higher rate in the presence of misalignment 
when we utilize fine-grained statistics.

- Like RFI-QKD, we need to assume a slowly-changing angle and a rotation only along one axis. However,  our 
approach can be directly applied to existing setup or data without physically needing another basis for encoding.

For BB84, a misalignment angle of 0.3 rad 
(8.7% error) is assumed. The weaker decoy 
intensities are 0.02 and 0.001 while signal 
intensity is optimized at around 0.2-0.4.

For MDI-QKD, misalignment angles of 0.15 
rad each between Alice-Charlie and Bob-
Charlie (8.7% error between Alice and Bob) 
are assumed. Three Intensity settings are 
fixed at [0.25,0.02,0.001].

- the linear program generates bounds on the pseudo-statistics for single photons;
- the numerical framework accepts these statistics as if they are from single 

photon sources (only replacing equality constraints with inequalities).
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