
An Open-source Software Platform for Numerical Key Rate Calculation of General
Quantum Key Distribution Protocols

Wenyuan Wang, Jie Lin, Ian George, Twesh Upadhyaya, Adam Winick, Shlok A. Nahar,
Kai-Hong Li, Kun Fang, Natansh Mathur, John Burniston, Max Chemtov, Shahabeddin M. Aslmarand,

Yanbao Zhang, Christopher Boehm, Patrick Coles, and Norbert Lütkenhaus
Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

India Institute of Technology Roorkee, Roorkee, India, 247667
NTT Basic Research Laboratories and NTT Research Center for Theoretical Quantum Physics, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, Japan 243-0198

University of Freiburg, Freiburg im Breisgau, Germany 79085
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, US

1

email: lutkenhaus.office@uwaterloo.ca

1
2

3
4

5

*

In this work, we present an open-source software platform that calculates key rate for general QKD protocols, building upon the numerical framework proposed by our group that can perform automated security proof of QKD
protocols. The software platform is fully modularized with mutually independent modules for descriptions of protocols/channels, solver modules for bounding key rate, and parameter optimization algorithms. It currently supports
BB84 and measurement-device-independent QKD (including decoy states), as well as discrete-modulated continuous variable QKD. It also supports finite-size analysis for non-decoy-state protocols. We hope that the open-sourcing
can attract theorists to test new protocols and/or contribute to new solvers, as well as appeal to experimentalists who wish to analyze their data or optimize parameters for new experiments.

å

Our group has proposed a novel numerical approach [1,2] for the
security proof of general QKD protocols.

Background

A QKD protocol can be described in a “prototypical” form [2] as above
with the steps of:

Architecture Current Package Contents

Our platform is also structured such that there are multiple
abstraction levels exposed to users with different purposes:

2. The backend solver module: takes in a set of data and calculates its key rate;

- Channel model can be from theoretical simulation, can also be from real experimental data

- Description file easily caters for various QKD protocols and side-channels

Based on our group’s previous works, we present an open-source platform to calculate the key rate of general QKD protocols.

Protocols:

[1] PJ Coles, EM Metodiev, and N Lütkenhaus. Nature Communications 7
(2016): 1-9.
[2] A Winick, N Lütkenhaus, and PJ Coles. Quantum 2 (2018): 77.

- Alice and Bob perform measurements (POVMs);
- Alice and Bob make announcements and post-selection based on the state

they receive, a process represented by a quantum channel (Kraus operators);
- Alice applies key map to obtain raw key;
- Alice passes classical information to Bob for error-correction;
- Alice and Bob perform privacy amplification to form final key

1 1 1 1 1

1 1 2 1 1 1

1,3 4 1,5 1,*

Solvers:

Parameter optimization algorithm (e.g. local search)
available for any protocol

Vision

With the open-sourcing of the platform, we hope that contributors
can bring in more protocols for testing, as well as newer solvers with
better efficacy or accuracy, such as the ongoing collaboration [8],
which will be part of the package in the future.

- Asymptotic solver module [2]

- Finite-size solver module (for all non-decoy protocols) [7]

- Gauss-Newton solver (*will be part of future release) [8]

- BB84 (supports decoy states) [3]

- MDI-QKD (supports decoy states) [3]

- Discrete-Modulated CV-QKD [4]

We also hope that the platform will interest experimentalists using
existing protocol descriptions in the package for analysis of
experimental data or optimization of experimental parameters.

The key rate is:

𝑅 = min
!∈#

𝑓 𝜌 − 𝑝$%&& × 𝑙𝑒𝑎𝑘'(&)*

where 𝑓 𝜌 = 𝐷 𝒢(𝜌)||𝒵(𝒢(𝜌)) is the quantum relative entropy, and
maps 𝒢 and 𝒵 are defined by the Kraus operator and key map, respectively.
The term 𝑝!"## × 𝑙𝑒𝑎𝑘$%#&' is the leaked information during error-correction.

The calculation of key rate comes down to minimizing the privacy
amplification part 𝒇 𝝆 , given that 𝜌 satisfies the constraints 𝑆 given
by POVMs Γ+ and their observed expectation values 𝛾+ .

We can lower-bound the key rate of a protocol, such as using a “two-
step approach” to break the optimization into multiple semidefinite-
programming problems [2], once we know these information below:

So far the framework has been successfully applied to various protocols
such as BB84 and measurement-device-independent QKD [1,3], discrete-
modulated continuous-variable QKD [4], as well as side-channels such as
detector-efficiency mismatch [5] and unbalanced encoding [6]. Finite-size
analysis [7] has also been successfully combined with the framework.

The platform is fully modularized, with three main types of modules, each independent from the rest and
is easily swappable between different modules.

- The solver follows the two-step numerical approach to bound key rate for a given instance of protocol. Both
asymptotic and finite-size solvers are included.

3. The main iteration: iterates or optimizes over a range of parameters. It views the solver module as a black box.

- The optimization of parameter is decoupled from the protocol/solver. Any number and any
combination of parameters can be specified as optimizable (or iterable).

- User can choose between various optimization algorithms, including e.g. efficient local-search algorithms.

- Kraus operators
- key maps,
- POVMs Γ(,
- expectation values 𝛾(
- error-correction leakage

- A casual user can pick up one of the presets to easily perform
simulations or optimize parameters for existing protocols.

- A theorist can choose to test key rates of new types of
protocols or channels by supplying new description files. An
experimentalist can also replace the channel model with
real data to calculate key rate.

- An expert user can opt to replace existing solver modules with one of their own, so long as it
follows the interface of accepting one set of protocol/channel data and returning a key rate.

1. The user-supplied input data: provides the protocol description and channel model, parameters and solver settings

[3] W Wang, N Lütkenhaus, preprint in preparation. Also see poster #229.

[5] Y Zhang, PJ Coles, A Winick, J Lin, N Lutkenhaus, Physical Review Research 3
(2021): 013076.
[6] NKH Li, and N Lütkenhaus. Physical Review Research 2 (2020): 043172.
[7] I George, J Lin, N Lütkenhaus. Physical Review Research 3 (2021): 013274.

[4] J Lin, T Upadhyaya, and N Lütkenhaus. Physical Review X 9 (2019): 041064.

[8] H Hu, J Im, J Lin, N Lütkenhaus, H Wolkowicz, arXiv:2104.03847 (2021).

References

Project website: openqkdsecurity.org

