Towards a relationship between single photon nature and randomness

Vardaan Mongia*1,2, Satyajeet Patil1,2, Sarika Mishra1,2, Ayan Biswas1,2, R.P. Singh1

1 Physical Research Laboratory, Ahmedabad, India - 380058
2 Indian Institute of Technology, Gandhinagar, India - 382424
*Corresponding author: vardaan.mongia.r@gmail.com

For discrete variable optical QRNG [1], the randomness of the QRNG directly relates to the quality of single photon property. Here, we investigate a relationship between quantifying parameter for single photon nature of SPDC process ($b=1-g^{(2)}(0)$) and quantifying parameter for randomness, min-entropy ($H_{\text{min}}(X)$). This investigation is done on three independent grounds, namely, time delay (τ), power and orbital angular momentum (OAM) of photons.

References:

Introduction

We conjecture a relationship between quality of single photon nature (b) and quality of randomness ($H_{\text{min}}(X)$), X can take both bit and block length values. This is done by experimentally observing a relationship between b and $H_{\text{min}}(X)$ on different parameters discussed above. The diagram on the left encapsulates the broader picture.

Conclusion:

Variation of b with time delay shows decrease in the quality of single photon nature because of multi-photon events from the SPDC process. These multi-photon events also debase the quality of randomness ($H_{\text{min}}(X)$). However, within the range shown (0 to 10 mW), it is evident that quality of randomness ($H_{\text{min}}(X)$) is almost insensitive towards quality of single photon nature.

Variation of b with power shows decrease in the quality of single photon nature because of multi-photon events from the SPDC process. These multi-photon events also debase the quality of randomness ($H_{\text{min}}(X)$). However, within the range shown (0 to 10 mW), it is evident that quality of randomness ($H_{\text{min}}(X)$) is almost insensitive towards quality of single photon nature.

Variation of b with OAM should not degrade randomness. This was observed at low power (1mW). However, with higher power (10 mW), one can see decrease in b and correspondingly a decrease in $H_{\text{min}}(X)$ value. This decrease is associated to multi-photon events that almost go to zero at low power (1 mW).