Alice randomly chooses the Z basis (left) or the X basis (right) to store bits x and y.

Karzig et al. [1] propose that islands of superconducting nanowires correspond to qubits. An “octon” island with 8 Majorana zero modes corresponds to 3 qubits.

Properties:
- Only can measure parity of any 2 MZMs
- The island has overall even parity
- Two operators commute if they intersect on even number of MZMs (Z_1 and Z_3), else anticommute

Suppose Bob wants bit x (stored in top four MZMs)
He measures parity of bottom four MZMs in either X or Z basis, by measuring the 2 vertical operators or the 2 horizontal operators. If the bottom has even parity, he reads bit x from the horizontal operator. If it has odd parity, he reads bit x from the vertical operator.

Thus, he always obtains bit x perfectly. But bit y is lost if he chose the wrong basis to get parity of bottom.

$$P(\text{get } y) = \frac{3}{4}$$

Claim: Octon is imperfect OTM

$$P(\text{get } x) = 1 \quad P(\text{get } y) = \frac{3}{4}$$

OR

$$P(\text{get } x) = \frac{3}{4} \quad P(\text{get } y) = 1$$

Read bit from octon OTM

$$P(\text{get } y) = \frac{3}{4}$$

What about MZM faults?
We choose a CSS code and obtain two classical codes A and B from it.
- In top layer, code A corresponds to the X stabilizers and logical operator X_A.
- In bottom layer, code B corresponds to Z stabilizers and logical operator Z_B.
- All stabilizer equivalents of X_A and Z_B intersect.

Thus, we can store the two classical bits as the parity of logical operators X_A and Z_B. Obtaining parity of one logical operator reduces probability of getting the other one.

One-time memory (OTM)

An ideal one-time memory stores two bits x and y. Bob can choose to read either x or y, but not both.

OTM

x, y

get x

OR

get y

NOT BOTH

Octon Majorana islands

Karzig et al. [1] propose that islands of superconducting nanowires correspond to qubits. An “octon” island with 8 Majorana zero modes corresponds to 3 qubits

Properties:
- Only can measure parity of any 2 MZMs
- The island has overall even parity
- Two operators commute if they intersect on even number of MZMs (Z_1 and Z_3), else anticommute

Octon cluster → Better OTM

A cluster of k octons is equivalent to a nearly perfect OTM. One bit is given by XOR of the top bits of all k octons, and the other bit is given by XOR of bottom bits of all k octons. If we want to correctly output one bit (say x), the other bit y can be read with probability

$$P(\text{get } y) = \frac{1}{2} + \frac{1}{2^k+1}$$

References
1. T. Karzig et al., PRB 95, 235305 (2017)
2. S. Goldwasser et al., Crypto 2008, 39