MAX-PLANCK-
INSTITUT FUR
QUANTENOPTIK

LMU

Elitenetzwerk

Bayern
»
LUDWIG- i
MAXIMILIANS g [:”' b
UNIVERSITAT a Bt :E’ IC Wd
e entrum for Digitalisierungs- un
MUNCHEN Technologieforschung der Bundeswehr

| Abstract |

\

2,3,4

Peter Freiwang *’, Lukas Knips *** and Harald Weinfurter

"IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, France
® Ludwig-Maximilian-University (LMU), Munich, Germany

* Max Planck Institute of Quantum Optics (MPQ), Garching, Germany
® Universitat der Bundeswehr Miinchen, Neubiberg, Germany

Open Source LDPC Error Correction for QKD

Adomas Baliuka *’, Elsa Dupraz ', Rengaraj Govindaraj **, Michael Auer **’,

2,34

° Munich Center for Quantum Science and Technology (MCQST), Munich, Germany

experimental
quantum

physics

'“’ — xgp.physik.uni-muenchen.de —

@D

IMT Atlantique

Eoolo Mnestoeom — MCQST

Error correction is an essential step in the classical post-
processing of all quantum key distribution (QKD) protocols. We
present error correction methods optimized for discrete variable
(DV) QKD and make them freely available as an ongoing open-
source project (github.com/XQP-Munich/LDPC4QKD).

LDPC codes are the subject of active research with many ap-
plications, such as for Wi-Fi and digital television. They have

been used for QKD error correction for a while, together with
methods such as Cascade [2]. A single LDPC code operates on
a fixed number of symbols and is optimized for a specific noise
level of the quantum channel. In practice, the quality of the quan-
tum channel fluctuates over time and across applications of a sin-
gle QKD system. Rate adaption solves this issue by modifying a
single LDPC code to adjust it to the current channel. We make
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use of recent, dedicated rate adaption methods specialized for
Slepian-Wolf coding [1]. These offer advantages [3, 4] over most
standard methods (e.g. puncturing and shortening) used in for-
ward error correction and so far also for QKD error correction.
We invite contributions from the research community and plan
to add support for more protocols, such as CV-QKD, in the future,
incorporating further developments in QKD and channel coding.
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e QKD error correction using LDPC codes

» Suppose Alice and Bob each have a string of bits (sifted keys) of length N that are identical, except for the ratio of wrong bits in the

string, the quantum bit error ratio (QBER).

 To reconcile the two, Alice sends Bob a sequence of bits (the syndrome) of length M, which is the matrix-vector product (mod 2) of
her key with an M x N parity check matrix H. We call R = % the (leak) rate of H.

» Bob uses a decoding algorithm (e.g. belief propagation) to correct his key to match Alice’s syndrome. The probability of decoding

failure is called the frame error rate (FER).

* Most decoding failures happen when the decoding algorithm fails to converge. Nevertheless, in a QKD protocol, eror correction

using LDPC codes must be followed by a verification step.
e LDPC code construction from protographs

A protograph [8] is a small matrix with integer coefficients that describes the degree distributions for a parity check matrix.

e Each row of the protograph represents a type of check node (CN); each column represents a type of variable node (VN).
» To construct an LDPC matrix, the protograph structure is repeated Z times and edges between nodes of corresponding types are

interleaved.

e Interleaving is done via a progressive edge growth (PEG) algorithm. This allows the creation of a matrix with the correct degree
distrubution and few short cycles in the Tanner graph (important for good decoding performance using Belief Propagation).

e Quasi-cyclic LDPC codes
» Quasi-cyclic LDPC codes [9] are a structured class of

e Example construction from protograph

« Example (adapted

LDPC codes. Their parity check matrix is restricted to
be a block matrix of circulant matrices.

« This structure allows memory-efficient storage of the TR, R

matrix and efficient syndrome computation. S — [1 2] . N e )
* It also allows lower complexity encoding when using Repeat ® Q

a generator matrix, which is beneficial for forward er- Cariable Check\ Z=2 > Interleave (

ror correction. In our application the generator matrix nodes nodes | times / edges @' /

is not used. ® —> ® _> . 0\
» Our quasi-cyclic codes are lifted from the protograph > > respecting
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type of CN and two types (called A, B) of VNs.

from [1]): protograph S = |1 2] specifies one

Estimated Finite Size Frame Error Rate
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e Protograph creation
» Protographs with good thresholds constructed via a genetic algorithm (Differential
Evolution [7]) and tested via Density Evolution.

e Protographs with rates 1/2 and 1/3
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« BSC thresholds (Density Evolution): 9.48% for Sy (from [1]) and 5.32% for So.

e Finite length performance
» Performance estimates [5] (using Density Evolution) for the block lengths considered
in the construction.
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e Decoding using belief propagation

» Frame error rates for different codes (varying rates and sizes) are compared.

e Simulations performed using AFF3CT [6] for better reproducibility
(for each reported FER, at least 400/FER frames were simulated).
 Detailed simulation parameters and outputs are available in the repository.
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e Need for rate adaption

rows in the parity check matrix.
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~ Rate Adapted Performance |

» Given “mother” matrix H; with syndrome length my, obtain “daugh-

o If Hi_,» has size m» x my, the rate adapted code H-> uses smaller
syndrome length m». This procedure is continued to obtain more

the receiver to uniquely recover the syndrome of H; from the syn-
drome of H,, together with some additional syndrome bits from

e The intermediate matrix H;_,» should have full rank. This enables @
C3
e The Tanner graph of H;_,» can be constructed from an intermedi- (vr)
» We limit the possible §1_,» to have one or two values 1 in each row @
and zeros otherwise. With this, each rate adaption step amounts H 1
to combining two parity check equations of the mother matrix, se- \
lected from types given by the protograph and to minimize short

~

 For error correction, a syndrome of the sifted key is exchanged. The syndrome length is given by the number of

* For fixed QBER, too short syndromes lead to frame errors, while too long syndromes are inefficient by leaking more
information to an eavesdropper than neccessary.
= adapt syndrome length to current quantum channel

e Combination of Tanner graphs
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e Rate adapted codes

* We rate adapt each mother matrix to half its original rate (the rate
adaption technique allows further rate reduction) in steps of one bit.

* Shown is rate adapted performance for the four smaller matrices.
See the repository for more details.

e Frame Error rates of rate adapted codes
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- Size 24576, adapted to rate 1/6 (mother rate 1/3)

Size 6144, adapted to rate 1/6 (mother rate 1/3)

Size 6144, adapted to rate 1/4 (mother rate 1/3)
Size 24576, adapted to rate 1/4 (mother rate 1/3)
Size 4096, adapted to rate 3/8 (mother rate 1/2)
Size 16384, adapted to rate 3/8 (mother rate 1/2)
Size 4096, adapted to rate 1/4 (mother rate 1/2)
Size 16384 adapted to rate 1/4 (mother rate 1/2)
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e Reconciliation inefficiency

» Let M be the syndrome length used to reconcile a key of length N.

- The reconciliation inefficiency is f = 5 hg(ACgBER) = h2(QI;ER)'

» Goal: as small as possible inefficiency f by minimizing rate R = %

- Consider the average leak rate R under optimal amount of rate
adaption, counting frame errors as R = 1 (similar to [2]).
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