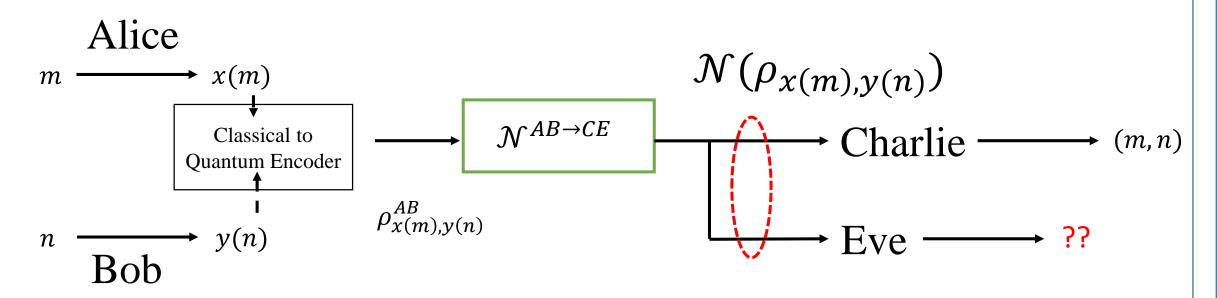


The Problem : Variants



Classical Quantum Multiple Access Channel

This Paper

Formal Problem Statement : The Point to Point Channel

Given a quantum channel $\mathcal{N}^{A \to BE}$, where A belongs the sender Alice, *B* belongs to the legitimate receiver Bob and *E* belongs to the eavesdropper Eve, does there exist a classical to quantum encoding map $\mathcal{F}^{[M] \to A}$ and a quantum classical decoding map $\mathcal{D}^{B \to [M]}$ such that the following conditions are met :

- **Reliability :** For all $m \in [M]$ Bob should be able to recover the transmitted message with probability of error at most some small constant $\epsilon > 0$.
- **Privacy :** For all $m \in [m]$, the state on Eve's system *E* should be close to a constant independent of m.

Strategy for the Point to Point Channel

- Alice creates a random code $\{x(m, k)\}$ from a fixed distribution P_X , for each index (m, k).
- She divides the codebook into blocks of size k, where each block corresponds to some message m. Here, $k \in [K], m \in [M]$.
- This operation corresponds to the encoding map $\mathcal{F}^{[M] \to A}$.
- To send the message *m*, Alice randomly chooses an index $k \in [K]$ at random and encodes the corresponding symbol x(m, k) into the input state $\rho_{x(m,k)}$.

Strategy for the Point to Point Channel

The Classical-Quantum MAC

The Simultaneous Smoothing Conjecture

 \circ **Reliability :** Existence of \mathcal{D} guaranteed by

• the HSW theorem in the asymptotic iid regime, whenever M < I(X:B)

• by Sen's sequential decoder in the One-shot regime, whenever $M < I_H^{\epsilon}(X;B)$

• **Privacy :** Guaranteed by the covering lemma and the random choice of *k* at the encoder (both iid and one-shot) :

 $\left\| \frac{1}{K} \sum_{k} \rho_{x(m,k)}^{E} - \rho^{E} \right\| \le \epsilon$

• Whenever K > I(X: E) in the asymptotic iid regime

• Whenever $K > I_{\max}^{\epsilon}(X:E)$ in the one-shot regime.

The Solution : A Successive Cancellation Covering Lemma

Under the same setup as the ideal lemma, the secrecy condition

Reliability : • Successive Cancellation + Time Sharing in asymptotic iid

> • Sen's Simultaneous decoder in the one-shot regime

ISSUE : Need a multiterminal version of the covering lemma to guarantee joint secrecy of Alice and Bob.

Ideal Multiterminal Covering Lemma : For senders Alice and Bob, given the encoding distributions P_X and P_Y , the classical to quantum channel $\mathcal{N}^{AB \to CE}$ and the resulting control state

 $\sum P_X(x)P_Y(y)\ket{x}ra{x}\otimes\ket{y}ra{y}\otimes
ho^{CE}_{x,y}$

for *K* and *L* random samples $\{x(k) \mid k \in [K]\}$ and $\{y(\ell) \mid \ell \in [L]\}$ picked independently form P_X and P_Y , we have

$$\mathbb{E} \left\| \frac{1}{KL} \sum_{k,\ell} \rho^E_{x(k),y(\ell)} - \rho^E \right\| \le \epsilon$$

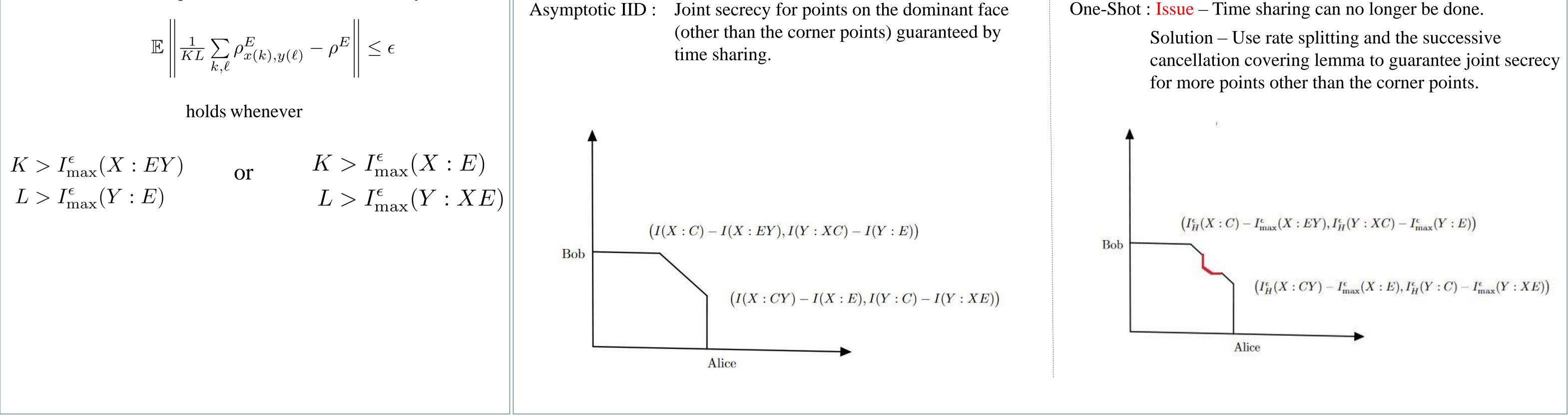
whenever

 $K > I_{\max}^{\epsilon}(X:C)$ $L > I_{\max}^{\epsilon}(Y:C)$ $K + L > I_{\max}^{\epsilon}(XY:C)$

THIS IS OPEN!

Consequences : The Private Classical Capacity of the Quantum MAC

Consequences : The Private Classical Capacity of the Quantum MAC



 $[\]rho_{x(m,k)}$ is input to the channel.