Limitations on Uncloneable Encryption and Simultaneous One-Way-to-Hiding

Research Center for Quantum Software

Christian Majenz, Christian Schaffner, Mehrdad Tahmasbi QuSoft, Amsterdam, Netherlands

1. Uncloneable Encryption: Introduction

Goal: Devise symmetric-key encryption/decryption algorithms such that an adversary cannot create two copies of the ciphertext from which the message can be decoded using key

Quantum encryption of classical messages (QECM): Alice encrypts classical message m into quantum ciphertext $Enc_k(m)$ using classical key k

Cloning attack: 1) Eve clones ciphertext using quantum channel $\mathcal{N}_{A\to BC}$. 2) Eve provides each part to two separated parties, Bob and Charlie, who receive the key k. 3) Bob and Charlie a attempt to guess the message m

The adversaries win if and only if Bob and Charlie both correctly decrypt the message.

2. Two Constructions

Two uncloneable encryption schemes are studied in [2]

- Construction 1: Alice encodes n bits using n bits of key, which specify the BB84 bases in which the message bits are encoded. The optimal probability of winning for the adversaries is $\left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right)^n$
- Construction 2: Let $m \in \{0,1\}^n$ be the message. Alice, Bob, and Charlie have quantum access to a random oracle $H: \{0,1\}^{\lambda} \to \mathbb{C}$ $\{0,1\}^n$. Alice encodes a random string x of λ bits similar to Construction 1 and transmits it together with $H(x) \oplus m$. The optimal probability of winning is upper-bounded by $\frac{9}{M} + \text{negl}(\lambda)$

3. Uncloneable-Indistinguishable Security

Uncloneable-Indistinguishable attack: Message chosen uniformly to be either an adversarially chosen message or a default one

Theorem 1 For any correct QECM scheme, and arbitrary default message m_0 , there exists an uncloneable-indistinguishable attack for which the adversary wins with probability at least

$$\frac{1}{2} + \frac{\max_{m \in \mathcal{M}} \mathbb{E}_{k \sim P_K}(\|\mathsf{Enc}_k(m))\|)}{16}$$
(1)

4. Simultanuous O2H Lemma

Simultanuous O2H Lemma We run quantum algorithms \mathcal{A} and \mathcal{B} with quantum oracle access to random function $H: \mathcal{X} \to \{0,1\}^n$ and access to shared entanglement. The probability that both algorithms correctly output H(x) for a fixed x is upper-bounded by $9 \times 2^{-n} + \text{poly}(q_{\mathcal{A}}, q_{\mathcal{B}})\sqrt{p}$ $q_{\mathcal{A}}$ and $q_{\mathcal{B}}$: number of queries made by \mathcal{A} and \mathcal{B} , respectively, probability that measuring the input registers of both algo- \mathcal{D} : rithms at two independently chosen queries returns x on both sides. Question: is the factor 9 an artifact of the proof technique used in [2], or whether a probability of Random oracle

• When probability of success for all attacks is $\frac{1}{2} + \operatorname{negl}(\lambda)$ (as desired in [2, Definition 11]), $\max_{m \in \mathcal{M}} \mathbb{E}_{k \sim P_K}(\|\mathsf{Enc}_k(m))\|)$ should be negligible

• We use the "cloning operation" $V_{A \to BC}$ $|\phi\rangle$ \mapsto $\frac{1}{\sqrt{2}}(|\perp\rangle_B \otimes |\phi\rangle_C + |\phi\rangle_B \otimes |\perp\rangle_C)$ where $|\perp\rangle$ is a unit vector orthogonal to A, which intuitively speaking distributes the input state in A to B and C "in superposition."

5. Optimal Scheme

Question: for a uniformly distributed message over a fixed set and a fixed ciphertext space A, which QECM scheme minimizes the optimal probability of winning?

Theorem 3 The optimal QECM scheme is as follows.

- **1**. Alice independently samples $T = (t_1, \dots, t_M)$ which is a permutation-invariant random vector such that $\sum_{m} t_{m} = d$ and random unitary U distributed according to Haar measure.
- 2. For encryption of message m, Alice chooses a fixed subspace of dimension t_m , prepares the maximally mixed state on that subspace,

success of $2^{-n} + \text{poly}(q_{\mathcal{A}}, q_{\mathcal{B}})\sqrt{p}$ is possible?

Theorem 2 There exists an example with p =0 (so simultaneous query-based extraction never succeeds), $\mathcal{X} = \{0, 1\}$ and n = 1 but \mathcal{A} and \mathcal{B} both output H(0) with probability 9/16, which is strictly larger than the trivial $\frac{1}{2}$.

6. Uniformly Distributed Message

When the message is uniformly distributed over all messages, we prove the following lower-bound on the optimal winning probability for the adversaries.

Theorem 4 Consider a correct QECM scheme satisfying the following conditions:

- 1. The key is uniformly distributed over a finite set.
- 2. All ciphertexts are maximally mixed states over sub-spaces of fixed size.

Then the adversaries can win the cloning game with probability at least

and then applies the unitary operation U.

We conjecture that a deterministic $T = (d/M, \dots, d/M)$ that splits the space evenly is optimal.

7. Open Questions

• Does exist a sequence of QECMs $\{\mathcal{E}_{\lambda}\}_{\lambda \in \mathbb{N}}$ such that

$$\lim_{\lambda \to \infty} p_{\text{win-ind}}^* \left(\mathcal{E}_{\lambda} \right) = \frac{1}{2} \text{ or } \lim_{\lambda \to \infty} \left| \mathcal{M}_{\lambda} \right| p_{\text{win-unif}}^* \left(\mathcal{E}_{\lambda} \right) = 1.$$
 (2)

- Does our conjecture for the optimal scheme hold?
- What is the optimal constant infront of 2^{-n} in the simultaneous O2H lemma?

8. References

[1] Christian Majenz, Christian Schaffner, and Mehrdad Tahmasbi. Limitations on uncloneable encryption and simultaneous one-way-to-hiding, 2021.

Anne Broadbent and Sébastien Lord. Uncloneable Quantum Encryp-|2| tion via Oracles. In 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020).