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Abstract

Self-testing is a method to verify that one has a particular quantum

state from purely classical statistics. For applications such as device-

independent delegated verifiable quantum computation, it is crucial that

one tests multiple Bell states in parallel while keeping the quantum re-

quirements of one side to a minimum. We use 3 × n magic rectangle
games to obtain a self-test for n Bell states where one side need only
make single-qubit Pauli measurements. It consumes little randomness,

is robust, and requires only perfect correlations. To achieve this, we in-

troduce a one-side-local quantum strategy for the magic square game

that wins with certainty, generalise this to the family of 3×nmagic rect-
angle games, and supplement these games with extra check rounds.

Magic square game

The magic square game is a nonlocal game played on a 3 × 3 grid [1].

Alice and Bob are assigned (uniformly at random) a row and column.

Players must fill their row/column with ±1 according to certain rules:

1. The product of Alice’s row must be positive.

2. The product of Bob’s column must be negative.
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Figure 1. Example for Alice (left) and Bob (middle). The players win (right).

Win condition: Values entered into the shared cell coincide.

One-side-local strategy

Optimal classical and quantum win probabilities 8/9 and 1.

Standard strategy has |Φ+〉⊗2
AB shared between Alice and Bob.

Requires two-qubit entangled measurements upon some inputs.

Alice needs only single-qubit measurements if |Φ+〉⊗3
AB shared.
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Figure 2. The standard strategy (left) and one-side-local strategy (right).

The one-side-local strategy generalises to 3 × n magic rectangle games

(for n = 3 mod 4) and has a similar structure.

Generalisation: Magic rectangle games

Magic rectangle games [2] are played on an m × n grid.

The rules are generalised accordingly:

1. The product of Alice’s ith row must be αi.

2. The product of Bob’s jth row must be βj.
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To avoid deterministic winning strategies, we also require

α1 . . . αm · β1 . . . βn = −1.

The self-test uses 3 rows, 3 (mod 4) columns, αi = +1, and βj = −1.

Self-testing protocol: Three Bell states

Let n = 3 be the number of Bell states to be tested. In each round, a
verifier chooses c ∈ {0, 1} and y ∈ {1, . . . , n}. The verifier sends Bob
(c, y) and, depending on c, runs one of the following subprotocols:

0. Magic game. Send Alice x ∈ {1, 2, 3}. Alice and Bob answer with
a1, . . . , an and b1, b2, b3 in {+1, −1} satisfying b1b2b3 = −1. Accept if and
only if

∏
k 6=y ak = bx.

1. Local check. Send Alice x ∈ {1, 3}. Alice and Bob answer with
a1, . . . , an and b1, . . . , bn in {+1, −1}. If x = 1, accept if and only if
ay = by. If x = 3, accept if and only if aj = bj for all j 6= y.

Self-testing protocol: Many Bell states

Let n = 3 (mod 4). The verifier chooses c ∈ {0, 1, 2} and performs the
previous protocol with an additional subprotocol if c = 2 is chosen:

2. Pair check. Send Alice x ∈ {1, 3}. Alice answers with a1, . . . , an. Bob

answers with n − 1 bits by−k,y+k and b′
y−k,y+k in {+1, −1} (with addition

taken modulo n) for all k ∈ {1, . . . , n−1
2 }. If x = 1, accept if and only if

aiaj = bi,j for all i, j. If x = 3, accept if and only if aiaj = b′
i,j for all i, j.

Robustness and completeness

If a strategy is accepted with probability at least 1 − ε, the protocol self-
tests the state |Φ+〉⊗n

AB with robustness O(n5/2√ε).

Subprotocol magic game ensures a perfect 3 × n strategy is used.
Local check rules out entangled measurements for Alice.

Pair check rules out deterministic extensions to single-qubit

strategies using smaller 3 × n′ magic rectangles.

There exist strategies (based on one-side-local magic game strategies)

that are accepted with certainty (use only perfect correlations).

In the honest case, Alice needs only single-qubit Pauli measurements,

while Bob requires two-qubit, entangled measurements.

Comparison

The protocol simultaneously achieves several properties desirable in the

client/server setting.

Protocol Local Perf. Err. tol. Input size

corr. ε(n, δ) Alice Bob

This protocol Alice Yes O(n−5δ2) O(1) O(log n)
Šupić et al. (2021) As base test N/A O(1)
Chao et al. (2018) Yes No O(n−5δ2) O(log n)
Natarajan and Vidick (2018) No Yes O(δc) O(log n)
Natarajan and Vidick (2017) As CHSH/MS O(δ16) O(n)
Coladangelo (2017): MS No Yes O(n−3δ2) O(n)
Coladangelo (2017): CHSH Yes No O(n−3δ2) O(n)
Coudron and Natarajan (2016) No Yes O(n−4δ4) O(n)
McKague (2016) Yes No O(n−8δ8) O(log log n)

Sample comparisons with other protocols, including some based on the

magic square (MS) game, are shown above.
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