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1 Abstract 4 Reporting if at least one detector clicks

* Mistrustful t t hy (MQC)isal field and f th
istrustful quantum cryptography (MQC) is a large field and one of the * Reporting strategy II: Bob sets m = 1 if at least one detector clicks (used in

squashing models in QKD and in Ref. [2]).

* If detector efficiencies are equal then this protects Bob perfectly from

major applications envisaged for a global quantum internet.

e It includes important tasks like bit commitment, coin flipping, oblivious

transfer and secure computations. , . , _
P arbitrary multi-photon attacks (Lemma 1 in Ref. [1]).

e We indentify [1] new multi-photon attacks on practical implementations , L L
y [l P 3 2 » Guaranteeing exactly equal etficiencies is impossible, but attenuators help.

of MQC with photonic setups, and show that some previous

: , » Multi-photon attack II: any strategy by Alice that allows her to exploit the
implementations were vulnerable.

difference in Bob's detection efficiencies when Bob sets m = 1 with unit
(high) probability if both detectors click.

* We illustrate the power of these attacks with an experiment.

* We also discuss side-channel attacks.

2 : : D Symmetrization of losses
Private measurement of an unknown qubit state | | |
. . . . . * Reporting strateqgy III: Bob discards detection events from the most
* Many interesting protocols in MQC use some version of the following task. efficient detector (basis), aiming to equalize his reporting probabilities [3].

* This can offer very good protection to Bob if Alice does not send pulses with
more than one photon (Lemma 2 in [1]). But, dishonest Alice may send
multi-photon pulses. Thus, Bob is not guaranteed protection.

1. Alice sends Bob a random BB84 state (other states can be considered too).
2. Bob generates a random bit b privately and measures the received state in
one of the two BB84 basis (computational if b = 0, or Hadamrd if b = 1).

3. Bob sends a bit message m to Alice reporting whether a measurement 6 Probabilistic reporting str ategies
outcome was produced (m = 1) or not (m = 0).

* Probabilistic reporting strategies: Bob sets m = 1 with a probability that
depends on which detectors click. The previous strategies are special cases.

e Trivial reporting strategy: Bob sets m = 1 with the same probability (e.g.,
unity) for all detection events. It is the only known reporting strategy offering
perfect protection against arbitrary multi-photon attacks. But it requires
extremely good setups with very low losses and high detection efficiencies to
be useful in practice (e.g., to guarantee correctness of the protocols).
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7 Main result

* Theorem 1 in Ref. [1]: if the detection efficiencies are different, then the only
probabilistic reporting strategy guaranteeing perfect protection against
arbitrary multi-photon attacks is the trivial reporting strategy.

 This implies that symmetrization of losses (introduced in Ref. [3]) does not
guarantee the claimed protection.

Honest Alice's setup Bob's setup

 Security against Alice: the probability that Alice guesses b should be
arbitrarily close to 1/2. (Here we assume Bob is honest.)

 Security against Alice can be achieved in ideal settings, where step 3 is not
needed. However, in practice, losses, imperfect detectors and other
experimental imperfections require step 3, compromising security. . . . .

* Morover, in practice, multiple detectors click with non-zero probability. 8 MUItl'PhOton attacks on previous lmplementatlons

* Reporting strategy: Bob must carefully choose which measurements are * We showed that [2-6] are vulnerable to multi-photon attacks (Table I in [1]).
reported in step 3. Here we focus on the setup illustrated above.

» Multi-photon attacks: dishonest Alice sends a pulse with arbtrary number of 9
photons encoding an arbitrary quantum state, and tries to guess b from m.

Discussion

e In multi-photon attacks, dishonest Alice sends multi-photon pulses and
obtains information about Bob's measurement basis.

3 Reporting only single clicks 7 | | |
* The trivial reporting strategy is the only known perfect protection, but
* Reporting strategy I. Bob sets m = 1 if only one detector clicks. it requires state of the art experimental setups to be useful in practice.
* Multi-photon attack I. Alice sends Bob a photon pulse with a large number of » Some countermeasures are: using attenuators to make detection efficiencies
photons in the same BB84 state (discussed in [2]). Ideally, if Bob measures in very close, using different setups to probabilistically infer if a pulse is
Alice's basis then only one detecctor clicks, otherwise both detectors click. multi-photon, aborting with double clicks, using variations of the task
Thus, Alice learns b from the message m. We illustrate Alice's guessing considered (e.g., a reversed version). But all these open other problems [1].
probability for an experimental simulation of the attack. * We also extensively analized a setup with four detectors (Appendix D4 in [1]),
including extensions of multi-photon attacks I and II.
Guessing probability vs. average photon number * In side-channel attacks, Alice controls further degrees of freedom. There is
! e not currently any perfect protection against arbitrary side-channel attacks.
0.9 e » Measurement-device and fully-device independent protocols have other
> S aRa security and implementation problems, e.g., loopholes (see Discussion in [1]).
5 08 P * A countermeasure providing unconditional security, in principle, against
¥e! o4 . . . L C . .
° . » arbitrary side-channel attacks comprises Bob filtering Alice's signal via
& | = teleportation. However, a practical problem is that there is a nonzero
§ 0.6 s probability of producing more than one pair of entangled photons. We believe
o this requires further investigation.
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