Multi-photon and side-channel attacks in mistrustful quantum cryptography

Mathieu Bozio1, Adrien Cavalli2, Eleni Diamanti2, Adrian Kent2, and Domínic Pitalua-García2 (dp373@cam.ac.uk)
1Faculty of Physics, University of Vienna, VCC, Boltzmanngasse 5, 1090 Vienna, Austria
2Sorbonne Université, CNRS, LIP6, 4 Place Jussieu, F-75005 Paris, France
3Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, United Kingdom
4Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

Abstract

1. Mistrustful quantum cryptography (MQC) is a large field and one of the major applications envisaged for a global quantum internet.
2. It includes important tasks like bit commitment, coin flipping, oblivious transfer and secure computations.
3. We indentify [1] new multi-photon attacks on practical implementations of MQC with photonic setups, and show that some previous implementations were vulnerable.
4. We illustrate the power of these attacks with an experiment.
5. We also discuss side-channel attacks.

1. Alice sends Bob a random BB84 state (other states can be considered too).
2. Bob generates a random bit b privately and measures the received state in one of the two BB84 basis (computational if $b = 0$, or Hadamard if $b = 1$).
3. Bob sends a bit message m to Alice reporting whether a measurement outcome was produced ($m = 1$) or not ($m = 0$).

2. Private measurement of an unknown qubit state

- Many interesting protocols in MQC use some version of the following task.

 - Alice and Bob agree on a key using BB84 states
 - Alice prepares n photons and sends them to Bob
 - Bob measures the states using a basis
 - Bob sends back the measurement outcomes to Alice
 - Alice and Bob can then use the results to generate a shared key

 - **Security against Alice**: the probability that Alice guesses b should be arbitrarily close to 1/2. (Here we assume Bob is honest.)
 - Security against Alice can be achieved in ideal settings, where step 3 is not needed. However, in practice, losses, imperfect detectors and other experimental imperfections require step 3, compromising security.
 - Moreover, in practice, multiple detectors click with non-zero probability.
 - Reporting strategy: Bob must carefully choose which measurements are reported in step 3. Here we focus on the setup illustrated above.

3. Reporting only single clicks

 - **Reporting strategy I**: Bob sets $m = 1$ if only one detector clicks.
 - **Multi-photon attack I**: Alice sends Bob a photon pulse with a large number of photons in the same BB84 state (discussed in [2]). Ideally, if Bob measures in Alice’s basis then only one detector clicks, otherwise both detectors click.
 - Thus, Alice learns b from the message m. We illustrate Alice’s guessing probability for an experimental simulation of the attack.

4. Reporting if at least one detector clicks

 - **Reporting strategy II**: Bob sets $m = 1$ if at least one detector clicks (used in squashing models in QKD and in Ref. [2]).
 - If detector efficiencies are equal then this protocol protects Bob perfectly from arbitrary multi-photon attacks (Lemma 1 in Ref. [1]).
 - Guaranteeing exactly equal efficiencies is impossible, but attenuators help.
 - **Multi-photon attack II**: any strategy by Alice that allows her to exploit the difference in Bob’s detection efficiencies when Bob sets $m = 1$ with unit (high) probability if both detectors click.

5. Symmetrization of losses

 - **Reporting strategy III**: Bob discards detection events from the most efficient detector (basis), aiming to equalize his reporting probabilities [3].
 - This can offer very good protection to Bob if Alice does not send pulses with more than one photon (Lemma 2 in [1]). But, dishonest Alice may send multi-photon pulses. Thus, Bob is not guaranteed protection.

6. Probabilistic reporting strategies

 - **Probabilistic reporting strategies**: Bob sets $m = 1$ with a probability that depends on which detectors click. The previous strategies are special cases.
 - **Trivial reporting strategy**: Bob sets $m = 1$ with the same probability (e.g., unity) for all detection events. It is the only known reporting strategy offering perfect protection against arbitrary multi-photon attacks. But it requires extremely good setups with very low losses and high detection efficiencies to be useful in practice (e.g., to guarantee correctness of the protocols).

7. Main result

 - **Theorem 1 in Ref. [1]**: if the detection efficiencies are different, then the only probabilistic reporting strategy guaranteeing perfect protection against arbitrary multi-photon attacks is the trivial reporting strategy.
 - This implies that symmetrization of losses (introduced in Ref. [3]) does not guarantee the claimed protection.

8. Multi-photon attacks on previous implementations

 - We showed that [2-6] are vulnerable to multi-photon attacks (Table I in [1]).

9. Discussion

 - In multi-photon attacks, dishonest Alice sends multi-photon pulses and obtains information about Bob’s measurement basis.
 - The trivial reporting strategy is the only known perfect protection, but it requires state of the art experimental setups to be useful in practice.
 - Some countermeasures are: using attenuators to make detection efficiencies very close, using different setups to probabilistically infer if a pulse is multi-photon, aborting with double clicks, using variations of the task considered (e.g., a reversed version). But all these open other problems [1].
 - We also extensively analyzed a setup with four detectors (Appendix D4 in [1]), including extensions of multi-photon attacks I and II.
 - In side-channel attacks, Alice controls further degrees of freedom. There is not currently any perfect protection against arbitrary side-channel attacks.
 - Measurement-device and fully-device independent protocols have other security and implementation problems, e.g., loopholes (see Discussion in [1]).
 - A countermeasure providing unconditional security, in principle, against arbitrary side-channel attacks comprises Bob filtering Alice’s signal via teleportation. However, a practical problem is that there is a nonzero probability of producing more than one pair of entangled photons. We believe this requires further investigation.
